Log canonical models for the moduli space of stable pointed rational curves

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Log Canonical Models of the Moduli Space of Stable Pointed Curves

n≥0 Γ(nKMg). Mg has been proven to be of general type for g ≥ 22 [EH,Fa,HaMu]. In particular in this case the finite generation of the canonical ring implies that the canonical model is birational to Mg. Recent progress has been made in this area. For example [BCHM] have proved the existence of canonical models in the case of smooth projective varieties of general type. A somewhat easier proble...

متن کامل

MODULI OF WEIGHTED POINTED STABLE CURVES AND LOG CANONICAL MODELS OF Mg,n

We establish nefness of certain tautological divisor classes onM0,n, and more generally on Hassett’s spacesMg,A, and prove thatMg,A is a log canonical model ofMg,n for every genus g and every weight vector A.

متن کامل

A Generalization of the Moduli Space of Pointed Stable Rational Curves

We introduce a smooth projective variety Td,n which may be viewed either as a compactification of the space of n distinct points on affine d-space modulo translation and homothety or as a compactification of the space of embeddings of a hyperplane in P together with n distinct points not lying on the hyperplane, up to projective equivalence. The points in the boundary of this compactification c...

متن کامل

Applied Mori theory of the moduli space of stable pointed rational curves

We investigate questions motivated by Mori’s program for the moduli space of stable pointed rational curves, M0,n. In particular, we study the nef cone of M0,n (Chapter 2), the Cox ring of M0,n (Chapter 3), and the cone of movable curves of M0,6 (Chapter 4). In Chapter 2, we prove Fulton’s conjecture forM0,n, n ≤ 7, which states that any divisor on M0,n non-negatively intersecting all members o...

متن کامل

The Final Log Canonical Model of the Moduli Space of Stable Curves of Genus Four

We describe the GIT quotient of the linear system of (3, 3) curves on P × P as the final non-trivial log canonical model of M4, isomorphic to M4(α) for 8/17 < α ≤ 29/60. We describe singular curves parameterized by M4(29/60), and show that the rational map M4 99K M4(29/60) contracts the Petri divisor, in addition to the boundary divisors ∆1 and ∆2. This answers a question of Farkas.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2013

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2013-11674-6