Localized smoothing and concentration for the Navier-Stokes equations in the half space

نویسندگان

چکیده

We establish a local-in-space short-time smoothing effect for the Navier-Stokes equations in half space. The whole space analogue, due to Jia and Šverák [21], is central tool two of authors' recent work on quantitative Lx3 blow-up criteria [7]. main difficulty that non-local effects pressure are much stronger than As an application, we demonstrate critical norm must concentrate at scales ∼T⁎−t presence Type I blow-up.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

the search for the self in becketts theatre: waiting for godot and endgame

this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...

15 صفحه اول

Asymptotic Behavior of Solutions to the Full Compressible Navier-stokes Equations in the Half Space

Abstract. The one-dimensional motion of compressible viscous and heat-conductive fluid is investigated in the half space. By examining the sign of fluid velocity prescribed on the boundary, initial boundary value problems with Dirichlet type boundary conditions are classified into three cases: impermeable wall problem, inflow problem and outflow problem. In this paper, the asymptotic stability ...

متن کامل

Navier-stokes Equations in the Half-space in Variable Exponent Spaces of Clifford-valued Functions

In this article, we study the steady generalized Navier-Stokes equations in a half-space in the setting of variable exponent spaces. We first establish variable exponent spaces of Clifford-valued functions in a half-space. Then, using this operator theory together with the contraction mapping principle, we obtain the existence and uniqueness of solutions to the stationary Navier-Stokes equation...

متن کامل

Inhomogeneous Navier-stokes Equations in the Half-space, with Only Bounded Density

In this paper, we establish the global existence of small solutions to the inhomogeneous Navier-Stokes system in the half-space. The initial density only has to be bounded and close enough to a positive constant, and the initial velocity belongs to some critical Besov space. With a little bit more regularity for the initial velocity, those solutions are proved to be unique. In the last section ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2023

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2022.109729