Localization of Matrix Factorizations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of Matrix Factorizations

Matrices with off-diagonal decay appear in a variety of fields in mathematics and in numerous applications, such as signal processing, statistics, communications engineering, condensed matter physics, and quantum chemistry. Numerical algorithms dealing with such matrices often take advantage (implicitly or explicitly) of the empirical observation that this off-diagonal decay property seems to b...

متن کامل

Nonnegative Matrix Factorizations Performing Object Detection and Localization

We study the problem of detecting and localizing objects in still, gray-scale images making use of the part-based representation provided by non-negative matrix factorizations. Non-negative matrix factorization represents an emerging example of subspace methods which is able to extract interpretable parts from a set of template image objects and then to additively use them for describing indivi...

متن کامل

Riordan group approaches in matrix factorizations

In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.

متن کامل

Learning with matrix factorizations

Matrices that can be factored into a product of two simpler matrices can serve as a useful and often natural model in the analysis of tabulated or highdimensional data. Models based on matrix factorization (Factor Analysis, PCA) have been extensively used in statistical analysis and machine learning for over a century, with many new formulations and models suggested in recent years (Latent Sema...

متن کامل

Convex Sparse Matrix Factorizations

We present a convex formulation of dictionary learning for sparse signal decomposition. Convexity is obtained by replacing the usual explicit upper bound on the dictionary size by a convex rank-reducing term similar to the trace norm. In particular, our formulation introduces an explicit trade-off between size and sparsity of the decomposition of rectangular matrices. Using a large set of synth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Foundations of Computational Mathematics

سال: 2014

ISSN: 1615-3375,1615-3383

DOI: 10.1007/s10208-014-9196-x