Localization-aware channel pruning for object detection
نویسندگان
چکیده
منابع مشابه
Localization-Aware Active Learning for Object Detection
Active learning a class of algorithms that iteratively searches for the most informative samples to include in a training dataset has been shown to be effective at annotating data for image classification. However, the use of active learning for object detection is still largely unexplored as determining informativeness of an object-location hypothesis is more difficult. In this paper, we addre...
متن کاملOn-the-fly Network Pruning for Object Detection
Object detection with deep neural networks is often performed by passing a few thousand candidate bounding boxes through a deep neural network for each image. These bounding boxes are highly correlated since they originate from the same image. In this paper we investigate how to exploit feature occurrence at the image scale to prune the neural network which is subsequently applied to all boundi...
متن کاملResource-Aware Harris Corner Detection Based on Adaptive Pruning
Corner-detection techniques are being widely used in computer vision – for example in object recognition to find suitable candidate points for feature registration and matching. Most computer-vision applications have to operate on real-time video sequences, hence maintaining a consistent throughput and high accuracy are important constrains that ensure high-quality object recognition. A high th...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولMulti-scale Location-aware Kernel Representation for Object Detection
Although Faster R-CNN and its variants have shown promising performance in object detection, they only exploit simple first-order representation of object proposals for final classification and regression. Recent classification methods demonstrate that the integration of highorder statistics into deep convolutional neural networks can achieve impressive improvement, but their goal is to model w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2020
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2020.03.056