منابع مشابه
Local-global Problem for Drinfeld Modules
In this paper we study the group S(a, K) := ker (
متن کاملSiegel’s Theorem for Drinfeld Modules
We prove a Siegel type statement for finitely generated φsubmodules of Ga under the action of a Drinfeld module φ. This provides a positive answer to a question we asked in a previous paper. We also prove an analog for Drinfeld modules of a theorem of Silverman for nonconstant rational maps of P over a number field.
متن کاملIntegral Points for Drinfeld Modules
We prove that in the backward orbit of a nonpreperiodic (nontorsion) point under the action of a Drinfeld module of generic characteristic there exist at most finitely many points S-integral with respect to another nonpreperiodic point. This provides the answer (in positive characteristic) to a question raised by Sookdeo in [26]. We also prove that for each nontorsion point z there exist at mos...
متن کاملIntroduction to Drinfeld Modules
(1) Explicit class field theory for global function fields (just as torsion of Gm gives abelian extensions of Q, and torsion of CM elliptic curves gives abelian extension of imaginary quadratic fields). Here global function field means Fp(T ) or a finite extension. (2) Langlands conjectures for GLn over function fields (Drinfeld modular varieties play the role of Shimura varieties). (3) Modular...
متن کاملThe Sato-tate Law for Drinfeld Modules
We prove an analogue of the Sato-Tate conjecture for Drinfeld modules. Using ideas of Drinfeld, J.-K. Yu showed that Drinfeld modules satisfy some Sato-Tate law, but did not describe the actual law. More precisely, for a Drinfeld module φ defined over a field L, he constructs a continuous representation ρ∞ : WL → D× of the Weil group of L into a certain division algebra, which encodes the Sato-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2004
ISSN: 0022-314X
DOI: 10.1016/s0022-314x(03)00163-x