Local word vectors guiding keyphrase extraction
نویسندگان
چکیده
منابع مشابه
Local Word Vectors Guiding Keyphrase Extraction
Automated keyphrase extraction is a fundamental textual information processing task concerned with the selection of representative phrases from a document that summarize its content. This work presents a novel unsupervised method for keyphrase extraction, whose main innovation is the use of local word embeddings (in particular GloVe vectors), i.e. embeddings trained from the single document und...
متن کاملLocal Word Vectors Guide Keyphrase Extraction
Word vector representation techniques, built on word-word co-occurrence statistics, often provide representations that decode the differences in meaning between various words. This significant fact is a powerful tool that can be exploited to a great deal of natural language processing tasks. In this work, we propose a simple and efficient unsupervised approach for keyphrase extraction, called R...
متن کاملCorpus-independent Generic Keyphrase Extraction Using Word Embedding Vectors
Keyphrase extraction from a given document is a difficult task that requires not only local statistical information but also extensive background knowledge. In this paper, we propose a graph-based ranking approach that uses information supplied by word embedding vectors as the background knowledge. We first introduce a weighting scheme that computes informativeness and phraseness scores of word...
متن کاملTopical Word Importance for Fast Keyphrase Extraction
We propose an improvement on a state-of-the-art keyphrase extraction algorithm, Topical PageRank (TPR), incorporating topical information from topic models. While the original algorithm requires a random walk for each topic in the topic model being used, ours is independent of the topic model, computing but a single PageRank for each text regardless of the amount of topics in the model. This in...
متن کاملTopical Word Trigger Model for Keyphrase Extraction
Keyphrase extraction aims to find representative phrases for a document. Keyphrases are expected to cover main themes of a document. Meanwhile, keyphrases do not necessarily occur frequently in the document, which is known as the vocabulary gap between the words in a document and its keyphrases. In this paper, we propose Topical Word Trigger Model (TWTM) for keyphrase extraction. TWTM assumes t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Processing & Management
سال: 2018
ISSN: 0306-4573
DOI: 10.1016/j.ipm.2018.06.004