Local Ihara’s Lemma and Applications

نویسندگان

چکیده

Abstract Persistence of nondegeneracy is a phenomenon that appears in the theory $\overline{\mathbb{Q}}_l$-representations linear group: every irreducible submodule restriction to mirabolic sub-representation nondegenerate representation nondegenerate. This not true anymore general, if we look at modulo $l$ reduction some stable lattice. As Clozel–Harris–Taylor generalization global Ihara’s lemma, show this property, called persistence and related notion essentially absolutely generic representations work Emerton Helm, remains for lattices given by cohomology Lubin–Tate spaces. application, give new construction automorphic congruences Ribet spirit. Résumé. La de la non dégénérescence est un phénomène qui apparait dans théorie des $\overline{\mathbb{Q}}_l$-représentations du groupe linéaire: toute sous-représentation irréductible au mirabolique d’une représentation dégénérée, dégénérée. Ce n’est plus le cas en général pour réduction d’un réseau stable. Comme généralisation par Clozel-Harris-Taylor lemme d’Ihara, nous montrons que cette propriété dégénérescence, reliée à essentiellement absolument générique Emerton-Helm, reste valide les réseaux donnés cohomologie espaces Lubin-Tate. Nous donnons une application nature globale construisant automorphes l’esprit travail Ribet.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharper Local Lemma with Improved Applications

We give a new family of Lovász Local Lemmas (LLL), with applications. Shearer has given the most general condition under which the LLL holds, but the original condition of Lovász is simpler and more practical. Do we have to make a choice between practical and optimal? In this article we present a continuum of LLLs between the original and Shearer’s conditions. One of these, which we call Clique...

متن کامل

Constructive Lovasz Local Lemma

Let V be a finite set of independent random variables, and let A denote a finite set of events that are determined by V . That is, each event A ∈ A maps the set of assignments of V to {0, 1}. Definition 1. Given the set of independent random variables V and set of events A determined by the variables of V , define the relevant variables for an event A ∈ A, denoted vbl(A) ⊂ V to be the smallest ...

متن کامل

Zorn’s Lemma and Some Applications

Zorn’s lemma is a result in set theory that appears in proofs of some non-constructive existence theorems throughout mathematics. We will state Zorn’s lemma below and use it in later sections to prove some results in linear algebra, ring theory, and group theory. In an appendix, we will give an application to metric spaces. The statement of Zorn’s lemma is not intuitive, and some of the termino...

متن کامل

Hensel’s Lemma and Some Applications

The purpose of this note is to record Hensel’s Lemma and a few of its immediate applications for my Math 831 class. At the end of the 19th century Hensel introduced the notion of completion into a number theoretic context in order to bring to bear techniques of analysis on some purely algebraic problems in number theory. One of his most crucial discoveries (in modern terms) was that when a ring...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnab298