Local cohomology modules and Gorenstein injectivity with respect to a semidualizing module
نویسندگان
چکیده
منابع مشابه
Gorenstein hereditary rings with respect to a semidualizing module
Let $C$ be a semidualizing module. We first investigate the properties of finitely generated $G_C$-projective modules. Then, relative to $C$, we introduce and study the rings over which every submodule of a projective (flat) module is $G_C$-projective (flat), which we call $C$-Gorenstein (semi)hereditary rings. It is proved that every $C$-Gorenstein hereditary ring is both cohe...
متن کاملGorenstein Projective Dimension with Respect to a Semidualizing Module
We introduce and investigate the notion of GC -projective modules over (possibly non-noetherian) commutative rings, where C is a semidualizing module. This extends Holm and Jørgensen’s notion of C-Gorenstein projective modules to the non-noetherian setting and generalizes projective and Gorenstein projective modules within this setting. We then study the resulting modules of finite GC-projectiv...
متن کاملSerre Subcategories and Local Cohomology Modules with Respect to a Pair of Ideals
This paper is concerned with the relation between local cohomology modules defined by a pair of ideals and the Serre subcategories of the category of modules. We characterize the membership of local cohomology modules in a certain Serre subcategory from lower range or upper range.
متن کاملGorenstein Projective, Injective and Flat Modules Relative to Semidualizing Modules
In this paper we study some properties of GC -projective, injective and flat modules, where C is a semidualizing module and we discuss some connections between GC -projective, injective and flat modules , and we consider these properties under change of rings such that completions of rings, Morita equivalences and the localizations.
متن کاملModules of finite homological dimension with respect to a semidualizing module
We prove versions of results of Foxby and Holm about modules of finite (Gorenstein) injective dimension and finite (Gorenstein) projective dimension with respect to a semidualizing module. We also verify special cases of a question of Takahashi and White. Mathematics Subject Classification (2000). 13C05, 13D05, 13H10.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archiv der Mathematik
سال: 2012
ISSN: 0003-889X,1420-8938
DOI: 10.1007/s00013-012-0459-y