Li–Yau–Hamilton estimates and Bakry–Emery–Ricci curvature
نویسندگان
چکیده
منابع مشابه
Remarks on Dispersive Estimates and Curvature
We investigate connections between certain dispersive estimates of a (pseudo)differential operator of real principal type and the number of nonvanishing curvatures of its characteristic manifold. More precisely, we obtain sharp thresholds for the range of Lebesgue exponents depending on the specific geometry.
متن کاملCurvature Estimates in Asymptotically Flat Manifolds of Positive Scalar Curvature
Suppose that (Mn, g) is an asymptotically flat Riemannian spin manifold of positive scalar curvature. The positive mass theorem [1, 2, 3] states that the total mass of the manifold is always positive, and is zero if and only if the manifold is flat. This result suggests that there should be an inequality which bounds the Riemann tensor in terms of the total mass and implies that curvature must ...
متن کاملCurvature Estimates for Irreducible Symmetric Spaces
By making use of the classification of real simple Lie algebra, we get the maximum of the squared length of restricted roots case by case, thus we get the upper bounds of sectional curvature for irreducible Riemannian symmetric spaces of compact type. As an application, we verify Sampson’s conjecture in all cases for irreducible Riemannian symmetric spaces of noncompact type.
متن کاملCurvature Estimates in Asymptotically Flat Lorentzian Manifolds
We consider an asymptotically flat Lorentzian manifold of dimension (1, 3). An inequality is derived which bounds the Riemannian curvature tensor in terms of the ADM energy in the general case with second fundamental form. The inequality quantifies in which sense the Lorentzian manifold becomes flat in the limit when the ADM energy tends to zero.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications
سال: 2015
ISSN: 0362-546X
DOI: 10.1016/j.na.2014.09.014