Lithium Bis(trimethylsilyl) Phosphate as a Novel Bifunctional Additive for High-Voltage LiNi<sub>1.5</sub>Mn<sub>0.5</sub>O<sub>4</sub>/Graphite Lithium-Ion Batteries
نویسندگان
چکیده
The beneficial role of lithium bis(trimethylsilyl) phosphate (LiTMSP), which may act as a novel bifunctional additive for high-voltage LiNi1.5Mn0.5O4 (LNMO)/graphite cells, has been investigated. LiTMSP is synthesized by heating tris(trimethylsilyl) with tert-butoxide. cycle performance LNMO/graphite cells at 45 °C significantly improved upon incorporation (0.5 wt %). Nuclear magnetic resonance analysis suggests that the trimethylsilyl (TMS) group in can react hydrogen fluoride (HF), generated through hydrolysis hexafluorophosphate (LiPF6) residual water an electrolyte solution or via oxidative decomposition reactions to form TMS fluoride. Inhibition HF leads decrease concentration transition-metal ion-dissolution (Ni and Mn) from LNMO electrode, determined inductively coupled plasma mass spectrometry. In addition, generation superior passivating surface film derived on graphite suppressing further reductive well deterioration/reformation caused migrated transition metal ions, supported combination chronoamperometry, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy. Furthermore, LiTMSP-derived better ion conductivity resistance confirmed electrochemical impedance leading improvement rate cells. HF-scavenging film-forming effects LiTMPS are responsible less polarization enabling °C.
منابع مشابه
Electrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملNovel Germanium/Polypyrrole Composite for High Power Lithium-ion Batteries
Nano-Germanium/polypyrrole composite has been synthesized by chemical reduction method in aqueous solution. The Ge nanoparticles were directly coated on the surface of the polypyrrole. The morphology and structural properties of samples were determined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Thermogravimetric analysis was carried out to determine...
متن کاملVoltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic
In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...
متن کاملTransparent lithium-ion batteries.
Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional appr...
متن کاملOrigami lithium-ion batteries.
There are significant challenges in developing deformable devices at the system level that contain integrated, deformable energy storage devices. Here we demonstrate an origami lithium-ion battery that can be deformed at an unprecedented high level, including folding, bending and twisting. Deformability at the system level is enabled using rigid origami, which prescribes a crease pattern such t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Applied Materials & Interfaces
سال: 2021
ISSN: ['1944-8244', '1944-8252']
DOI: https://doi.org/10.1021/acsami.1c02572