Liquid crystal films as on-demand, variable thickness (50–5000 nm) targets for intense lasers
نویسندگان
چکیده
منابع مشابه
Paintable band-edge liquid crystal lasers.
In this paper we demonstrate photonic band-edge laser emission from emulsion-based polymer dispersed liquid crystals. The lasing medium consists of dye-doped chiral nematic droplets dispersed within a polymer matrix that spontaneously align as the film dries. Such lasers can be easily formed on single substrates with no alignment layers. The system combines the self-organizing periodic structur...
متن کاملEnhanced emission from liquid-crystal lasers
The performance of a photonic band-edge laser fabricated from a low molar mass dye-doped chiral nematic liquid crystal is found to have a strong thermal dependence. At each temperature the performance of the laser has been characterized by the slope efficiency which was calculated from a plot of the emission energy as a function of excitation energy. This slope efficiency was found to increase ...
متن کاملMolecular dynamics investigation of thickness effect on liquid films
This work applies the molecular dynamics simulation method to study a Lennard-Jones liquid thin film suspended in the vapor and to explore the film thickness effect on its stability. For the accurate estimation of local pressure distributions in the film, an improved method is proposed and used. Simulation results indicate that profiles of the local surface tension distribution vary widely with...
متن کاملComparison the Effect of 810 nm and 940 nm Diode Lasers on Solobacterium Moorei in Vitro
Background and aim: Given the role of Solobacterium moorei in bacteremia, septicemia, oral infections, halitosis, and periodontal diseases and previous research defects considering the important role of laser in comparison with the application of antimicrobial agents, the purpose of this research was to compare the effect of 810nm and 940nm lasers on Solobacterium moorei in vitro situation. Mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics of Plasmas
سال: 2014
ISSN: 1070-664X,1089-7674
DOI: 10.1063/1.4885100