Lipschitz metric for the Hunter–Saxton equation
نویسندگان
چکیده
منابع مشابه
Lipschitz Metric for the Hunter–saxton Equation
We study stability of solutions of the Cauchy problem for the Hunter–Saxton equation ut + uux = 14 ( R x −∞ u 2 x dx− R∞ x ux dx) with initial data u0. In particular, we derive a new Lipschitz metric dD with the property that for two solutions u and v of the equation we have dD(u(t), v(t)) ≤ edD(u0, v0).
متن کاملLipschitz Metric for the Periodic Camassa–holm Equation
We study stability of conservative solutions of the Cauchy problem for the periodic Camassa–Holm equation ut−uxxt +3uux−2uxuxx−uuxxx = 0 with initial data u0. In particular, we derive a new Lipschitz metric dD with the property that for two solutions u and v of the equation we have dD(u(t), v(t)) ≤ edD(u0, v0). The relationship between this metric and usual norms in H1 per and L ∞ per is clarif...
متن کاملBi-Lipschitz Decomposition of Lipschitz functions into a Metric space
We prove a quantitative version of the following statement. Given a Lipschitz function f from the k-dimensional unit cube into a general metric space, one can be decomposed f into a finite number of BiLipschitz functions f |Fi so that the k-Hausdorff content of f([0, 1] r ∪Fi) is small. We thus generalize a theorem of P. Jones [Jon88] from the setting of R to the setting of a general metric spa...
متن کاملThe Helmholtz Equation on Lipschitz Domains
We use the method of layer potentials to study interior and exterior Dirichlet and Neumann problems for the Helmholtz equation ( +k)u = 0 on a Lipschitz domain for all wave number k 2C with Imk 0. Following the approach for the case of smooth boundary [3], we pursue as solution a single layer potential for Neumann problem or a double layer potential for Dirichlet problem. The lack of smoothness...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2010
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2010.02.005