Linear Stability of the n-gon Relative Equilibria of the (1 + n)-Body Problem
نویسندگان
چکیده
منابع مشابه
Stability of Relative Equilibria in the Planar n-Vortex Problem
We study the linear and nonlinear stability of relative equilibria in the planar n-vortex problem, adapting the approach of Moeckel from the corresponding problem in celestial mechanics. After establishing some general theory, a topological approach is taken to show that for the case of positive circulations, a relative equilibrium is linearly stable if and only if it is a nondegenerate minimum...
متن کاملthe problem of divine hiddenness
این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...
15 صفحه اولRelative Equilibria of the (1+N)-Vortex Problem
We examine existence and stability of relative equilibria of the nvortex problem specialized to the case where N vortices have small and equal circulation and one vortex has large circulation. As the small circulation tends to zero, the weak vortices tend to a circle centered on the strong vortex. A special potential function of this limiting problem can be used to characterize orbits and stabi...
متن کاملReduction, Relative Equilibria and Stability for a Gyrostat in the N-body Problem
We consider the non-canonical Hamiltonian dynamics of a gyrostat in the nbody problem. Using the symmetries of the system we carry out a reduction process in two steps, giving explicitly at each step the Poisson structure of the reduced system. Next, we obtain general properties of the relative equilibria of the problem and if we restrict to different approximations of the gravitational potenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Qualitative Theory of Dynamical Systems
سال: 2012
ISSN: 1575-5460,1662-3592
DOI: 10.1007/s12346-012-0089-6