LINEAR SERIES ON CURVES: STABILITY AND CLIFFORD INDEX

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gonality and Clifford index of curves on K3 surfaces

We show that every possible value for the Clifford index and gonality of a curve of a given genus on a K3 surface over the complex numbers occurs.

متن کامل

Clifford Index of Acm Curves in P

In this paper we review the notions of gonality and Clifford index of an abstract curve. For a curve embedded in a projective space, we investigate the connection between the Clifford index of the curve and the geometrical properties of its embedding. In particular if C is a curve of degree d in P 3 , and if L is a multisecant of maximum order k , then the pencil of planes through L cuts out a ...

متن کامل

Linear Series on Semistable Curves

We study h 0 (X, L) for line bundles L on a semistable curve X of genus g, parametrized by the compactified Picard scheme. The theorem of Riemann is shown to hold. The theorem of Clifford is shown to hold in the following cases: X has two components; X is any semistable curve and d = 0 or d = 2g − 2; X is stable, free from separating nodes, and d ≤ 4. These results are shown to be sharp. Applic...

متن کامل

Clifford Indices for Vector Bundles on Curves

For smooth projective curves of genus g ≥ 4, the Clifford index is an important invariant which provides a bound for the dimension of the space of sections of a line bundle. This is the first step in distinguishing curves of the same genus. In this paper we generalise this to introduce Clifford indices for semistable vector bundles on curves. We study these invariants, giving some basic propert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics

سال: 2012

ISSN: 0129-167X,1793-6519

DOI: 10.1142/s0129167x12501212