Linear Quantum Entropy and Non-Hermitian Hamiltonians
نویسندگان
چکیده
منابع مشابه
Linear Quantum Entropy and Non-Hermitian Hamiltonians
We consider the description of open quantum systems with probability sinks (or sources) in terms of general non-Hermitian Hamiltonians. Within such a framework, we study novel possible definitions of the quantum linear entropy as an indicator of the flow of information during the dynamics. Such linear entropy functionals are necessary in the case of a partially Wigner-transformed non-Hermitian ...
متن کاملGauging non-Hermitian Hamiltonians
We address the problem of coupling non-Hermitian systems, treated as fundamental rather than effective theories, to the electromagnetic field. In such theories the observables are not the x and p appearing in the Hamiltonian, but quantities X and P constructed by means of the metric operator. Following the analogous procedure of gauging a global symmetry in Hermitian quantum mechanics we find t...
متن کاملFock Space Representations for Non-Hermitian Hamiltonians
The requirement of Hermiticity of a Quantum Mechanical Hamiltonian, for the description of physical processes with real eigenvalues which has been challenged notably by Carl Bender, is examined for the case of a Fock space Hamilitonian which is bilinear in two creation and destruction operators. An interpretation of this model as a Schrödinger operator leads to an identification of the Hermitia...
متن کاملNon-linear Supersymmetry for non-Hermitian, non-diagonalizable Hamiltonians: II. Rigorous results
We continue our investigation of the nonlinear SUSY for complex potentials started in the Part I [7] and prove the theorems characterizing its structure in the case of nondiagonalizable Hamiltonians. This part provides the mathematical basis of previous studies. The classes of potentials invariant under SUSY transformations for non-diagonalizable Hamiltonians are specified and the asymptotics o...
متن کاملNon-linear Supersymmetry for non-Hermitian, non-diagonalizable Hamiltonians: I. General properties
We study complex potentials and related non-diagonalizable Hamiltonians with special emphasis on formal definitions of associated functions and Jordan cells. The non-linear SUSY for complex potentials is considered and the theorems characterizing its structure are presented. We define the class of complex potentials invariant under SUSY transformations for (non-)diagonalizable Hamiltonians and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2016
ISSN: 1099-4300
DOI: 10.3390/e18120451