Linear programming, recurrent associative memories, and feed-forward neural networks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

solving linear semi-infinite programming problems using recurrent neural networks

‎linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎in this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎by a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎then‎, ‎we use...

متن کامل

A greenhouse control with feed-forward and recurrent neural networks

Greenhouses are classified as complex systems, so it is difficult to implement classical control methods for this kind of process. In our case we have chosen neural network techniques to drive the internal climate of a greenhouse. An Elman neural network has been used to emulate the direct dynamics of the greenhouse. Based on this model, a multilayer feedforward neural network has been trained ...

متن کامل

Feed-Forward and Recurrent Neural Networks in Signal Prediction

The paper is devoted to time series prediction using linear, perceptron and Elman neural networks of the proposed pattern structure. Signal wavelet de-noising in the initial stage is discussed as well. The main part of the paper is devoted to the comparison of different models of time series prediction. The proposed algorithm is applied to the real signal representing gas consumption.

متن کامل

Feed-Forward Chains of Recurrent Attractor Neural Networks Near Saturation

We perform a stationary state replica analysis for a layered network of Ising spin neurons, with recurrent Hebbian interactions within each layer, in combination with strictly feedforward Hebbian interactions between successive layers. This model interpolates between the fully recurrent and symmetric attractor network studied by Amit el al, and the strictly feed-forward attractor network studie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1991

ISSN: 0898-1221

DOI: 10.1016/0898-1221(91)90036-4