Linear optimization over permutation groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration over Quantum Permutation Groups

A remarkable fact, discovered by Wang in [14], is that the set Xn = {1, . . . , n} has a quantum permutation group. For n = 1, 2, 3 this is the usual symmetric group Sn. However, starting from n = 4 the situation is different: for instance the dual of Z2 ∗ Z2 acts on X4. In other words, “quantum permutations” do exist. They form a compact quantum group Qn, satisfying the axioms of Woronowicz in...

متن کامل

Permutation Presentations of Modules over Finite Groups

We introduce a notion of permutation presentations of modules over finite groups, and completely determine finite groups over which every module has a permutation presentation. To get this result, we prove that every coflasque module over a cyclic p-group is permutation projective.

متن کامل

Pseudorandom Permutation Families over Abelian Groups

We propose a general framework for differential and linear cryptanalysis of block ciphers when the block is not a bitstring. We prove piling-up lemmas for the generalized differential probability and the linear potential, and we study their lower bounds and average value, in particular in the case of permutations of Fp. Using this framework, we describe a toy cipher, that operates on blocks of ...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

Permutation Groups

The theory of permutation groups is essentially the theory of symmetry for mathematical and physical systems. It therefore has major impact in diverse areas of mathematics. Twentieth-century permutation group theory focused on the theory of finite primitive permutation groups, and this theory continues to become deeper and more powerful as applications of the finite simple group classification,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Optimization

سال: 2005

ISSN: 1572-5286

DOI: 10.1016/j.disopt.2005.08.005