Linear mixed models with marginally symmetric nonparametric random effects
نویسندگان
چکیده
منابع مشابه
Multivariate generalized linear mixed models with semi-nonparametric and smooth nonparametric random effects densities
We extend the family of multivariate generalized linear mixed models to include random effects that are generated by smooth densities. We consider two such families of densities, the so-called semi-nonparametric (SNP) and smooth nonparametric (SMNP) densities. Maximum likelihood estimation, under either the SNP or the SMNP densities, is carried out using a Monte Carlo EM algorithm. This algorit...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملMarginally Interpretable Generalized Linear Mixed Models
Two popular approaches for relating correlated measurements of a non-Gaussian response variable to a set of predictors are to fit a marginal model using generalized estimating equations and to fit a generalized linear mixed model by introducing latent random variables. The first approach is effective for parameter estimation, but leaves one without a formal model for the data with which to asse...
متن کاملRandom effects selection in linear mixed models.
We address the important practical problem of how to select the random effects component in a linear mixed model. A hierarchical Bayesian model is used to identify any random effect with zero variance. The proposed approach reparameterizes the mixed model so that functions of the covariance parameters of the random effects distribution are incorporated as regression coefficients on standard nor...
متن کاملRandom Effects in Generalized Linear Mixed Models
In this chapter, we examine the use of special forms of correlated random e ects in the generalized linear mixed model (GLMM) setting. A special feature of our GLMM is the inclusion of random residual e ects to account for lack of t due to extra variation, outliers and other unexplained sources of variation. For random e ects, we consider, in particular, the correlation structure and improper p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2016
ISSN: 0167-9473
DOI: 10.1016/j.csda.2016.05.005