Linear Grading Function and Further Reduction of Normal Forms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic reduction of Normal Forms

We present an algorithmic procedure to further reduce (Poincar e) Normal Forms; we give both general results and methods, and a concrete application.

متن کامل

Reduction and Normal Forms of Matrix Pencils

Matrix pencils, or pairs of matrices, may be used in a variety of applications. In particular, a pair of matrices (E,A) may be interpreted as the differential equation Ex′ + Ax = 0. Such an equation is invariant by changes of variables, or linear combination of the equations. This change of variables or equations is associated to a group action. The invariants corresponding to this group action...

متن کامل

Further Reductions of Normal Forms for Dynamical Systems

We propose in this paper a method for obtaining a significant refinement of normal forms for dynamical systems or vector fields, with concrete and interesting applications. We use lower order nonlinear terms in the normal form for the simplifications of higher order terms. Our approach is applicable for both the non nilpotent and the nilpotent cases. For dynamical systems of dimensions 2 and 3 ...

متن کامل

Further Reductions of Poincaré-dulac Normal Forms in C

In this paper, we will consider (germs of) holomorphic mappings of the form (f(z), λ1w1(1 + g1(z)), . . . , λnwn(1 + gn(z))), defined in a neighborhood of the origin in Cn+1. Most of our interest is in those mappings where f(z) = z+ amz + · · · is a germ tangent to the identity and gi(0) = 0 for i = 1, . . . , n, and λi ∈ C possess no resonances, for these are the so-called PoincaréDulac normal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1996

ISSN: 0022-0396

DOI: 10.1006/jdeq.1996.0181