Linear algebra in lattices and nilpotent endomorphisms of semisimple modules
نویسندگان
چکیده
منابع مشابه
The Jordan normal base in lattices and nilpotent endomorphisms of finitely generated semisimple modules
We formulate a lattice theoretical Jordan normal form theorem for certain nilpotent lattice maps satisfying the so called JNB conditions. As an application of the general results, we obtain a transparent Jordan normal base of a nilpotent endomorphism in a finitely generated semisimple module.
متن کاملPrincipal nilpotent pairs in a semisimple Lie algebra
This is the first of a series of papers devoted to certain pairs of commuting nilpotent elements in a semisimple Lie algebra that enjoy quite remarkable properties and which are expected to play a major role in Representation theory. The properties of these pairs and their role is similar to those of the principal nilpotents. To any principal nilpotent pair we associate a two-parameter analogue...
متن کامل2-step Nilpotent Lie Groups Arising from Semisimple Modules
Let G0 denote a compact semisimple Lie algebra and U a finite dimensional real G0 module. The vector space N0 = U ⊕ G0 admits a canonical 2-step nilpotent Lie algebra structure with [N0,N0] = G0 and an inner product 〈, 〉, unique up to scaling, for which the elements of G0 are skew symmetric derivations of N0. Let N0 denote the corresponding simply connected 2-step nilpotent Lie group with Lie a...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2008
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2007.10.022