Limit Cycles and Integrability of a Class of Quintic System

نویسندگان

چکیده

In this paper, a class of quintic systems is investigated. The first 13 focal values are computed with the aid MATHEMATICA. Then necessary conditions integrability and linearizability obtained sufficiency every condition proved. Meanwhile, bifurcation limit cycles discussed, can be bifurcated from origin. As far as number enclosing an isolated singular point concerned, so best result for elementary points.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations

We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.

متن کامل

relationships between darboux integrability and limit cycles for a class of able equations

we consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmpxypxypxy++++2(,)(,)(,)nnmnmyqxyqxyqxy++&=++. for where and are homogeneous polynomials of degree i. inside this class of polynomial differential equation we consider a subclass of darboux integrable systems. moreover, under additional conditions we proved such darboux integrable systems can have at most 1 limit cycle.

متن کامل

The number of limit cycles of a quintic polynomial system

In this paper we consider the bifurcation of limit cycles of the system ˙ x = y(x 2 − a 2)(y 2 − b 2) + εP(x, y), ˙ y = −x(x 2 − a 2)(y 2 − b 2) + εQ (x, y) for ε sufficiently small, where a, b ∈ R − {0}, and P, Q are polynomials of degree n, we obtain that up to first order in ε the upper bounds for the number of limit cycles that bifurcate from the period annulus of the quintic center given b...

متن کامل

Ten Limit Cycles in a Quintic Lyapunov System

In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMATICA, the first 10 quasi Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there exist 10 small ...

متن کامل

Local bifurcation of limit cycles and center problem for a class of quintic nilpotent systems

* Correspondence: [email protected] School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471003, Henan, P. R. China Full list of author information is available at the end of the article Abstract For a class of fifth degree nilpotent system, the shortened expressions of the first eight quasi-Lyapunov constants are presented. It is shown that the orig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10162993