Lifting recollements of abelian categories and model structures
نویسندگان
چکیده
We use Quillen model structures to show a systematic method lift recollements of hereditary abelian categories their associated homotopy categories. To that end, we the notion adjoint triples and investigate transfers along pairs. Applications include liftings module derived counterpart, provide models for stable Gorenstein projective injective modules n-morphism over Iwanaga-Gorenstein rings.
منابع مشابه
Recollements and Singularity Categories
This is a report on my ongoing joint work with Martin Kalck. The recollement generated by a projective module is described. Application to singularity categories is discussed.
متن کاملHighest Weight Categories and Recollements
We provide several equivalent descriptions of a highest weight category using recollements of abelian categories. Also, we explain the connection between sequences of standard and exceptional objects.
متن کاملRecollements of Derived Functor Categories ∗ †
We give an equivalence between the derived category of a locally finitely presented category and the derived category of contravariant functors from its finitely presented subcategory to the category of abelian groups, in the spirit of Krause’s work [H. Krause, Approximations and adjoints in homotopy categories, Math. Ann. 353 (2012), 765–781]. Then we provide a criterion for the existence of r...
متن کاملRecollements of (derived) module categories
Recollements of abelian, resp. triangulated, categories are exact sequences of abelian, resp. triangulated, categories where the inclusion functor as well as the quotient functor have left and right adjoints. They appear quite naturally in various settings and are omnipresent in representation theory. Recollements which all categories involved are module categories (abelian case) or derived cat...
متن کاملRecollements of derived categories III: finitistic dimensions
In this paper, we study homological dimensions of algebras linked by recollements of derived module categories, and establish a series of new upper bounds and relationships among their finitistic or global dimensions. This is closely related to a longstanding conjecture, the finitistic dimension conjecture, in representation theory and homological algebra. Further, we apply our results to a ser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2023
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2023.01.030