Lifting recollements of abelian categories and model structures

نویسندگان

چکیده

We use Quillen model structures to show a systematic method lift recollements of hereditary abelian categories their associated homotopy categories. To that end, we the notion adjoint triples and investigate transfers along pairs. Applications include liftings module derived counterpart, provide models for stable Gorenstein projective injective modules n-morphism over Iwanaga-Gorenstein rings.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recollements and Singularity Categories

This is a report on my ongoing joint work with Martin Kalck. The recollement generated by a projective module is described. Application to singularity categories is discussed.

متن کامل

Highest Weight Categories and Recollements

We provide several equivalent descriptions of a highest weight category using recollements of abelian categories. Also, we explain the connection between sequences of standard and exceptional objects.

متن کامل

Recollements of Derived Functor Categories ∗ †

We give an equivalence between the derived category of a locally finitely presented category and the derived category of contravariant functors from its finitely presented subcategory to the category of abelian groups, in the spirit of Krause’s work [H. Krause, Approximations and adjoints in homotopy categories, Math. Ann. 353 (2012), 765–781]. Then we provide a criterion for the existence of r...

متن کامل

Recollements of (derived) module categories

Recollements of abelian, resp. triangulated, categories are exact sequences of abelian, resp. triangulated, categories where the inclusion functor as well as the quotient functor have left and right adjoints. They appear quite naturally in various settings and are omnipresent in representation theory. Recollements which all categories involved are module categories (abelian case) or derived cat...

متن کامل

Recollements of derived categories III: finitistic dimensions

In this paper, we study homological dimensions of algebras linked by recollements of derived module categories, and establish a series of new upper bounds and relationships among their finitistic or global dimensions. This is closely related to a longstanding conjecture, the finitistic dimension conjecture, in representation theory and homological algebra. Further, we apply our results to a ser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2023

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2023.01.030