Lie symmetry analysis and exact solutions of the (3+1)-dimensional generalized Shallow Water-like equation
نویسندگان
چکیده
In this article, (3+1)-dimensional generalized Shallow Water-like (gSWl) equation is discussed. The infinitesimal generators of the are derived by using Lie symmetry analysis method. optimal system obtained based on adjoint table equation. Exact solutions constructed applying reduction, Exp −ϕ(ξ) expansion method, Exp-function Riccati and id="m2">G′/G For analyzing dynamical behavior solutions, we derive physical structures dark soliton, kink wave, periodic via numerical simulations.
منابع مشابه
Exact Solutions of the Nonlinear Generalized Shallow Water Wave Equation
Submitted: Nov 12, 2013; Accepted: Dec 18, 2013; Published: Dec 22, 2013 Abstract: In this article, we have employed an enhanced (G′/G)-expansion method to find the exact solutions first and then the solitary wave solutions of the nonlinear generalized shallow water wave equation. Here we have derived solitons, singular solitons and periodic wave solutions through the enhanced (G′/G)-expansion ...
متن کاملThe Exact Rational Solutions to a Shallow Water Wave-Like Equation by Generalized Bilinear Method
A Shallow Water Wave-like nonlinear differential equation is considered by using the generalized bilinear equation with the generalized bilinear derivatives 3,x D and 3,t D , which possesses the same bilinear form as the standard shallow water wave bilinear equation. By symbolic computation, four presented classes of rational solutions contain all rational solutions to the resulting Shallow Wat...
متن کاملExact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملLie Symmetry and Exact Solution of (2+1)-dimensional Generalized Kadomtsev-petviashvili Equation with Variable Coefficients
The simple direct method is adopted to find Non-Auto-Backlund transformation for variable coefficient non-linear systems. The (2+1)-dimensional generalized Kadomtsev-Petviashvili equation with variable coefficients is used as an example to elucidate the solution procedure, and its symmetry transformation and exact solutions are obtained.
متن کاملLie symmetry Analysis and Explicit Exact Dolutions of the Time Fractional Drinfeld-Sokolov-Wilson (DSW) System
In this study coupled system of nonlinear time fractional Drinfeld-Sokolov-Wilson equations, which describes the propagation of anomalous shallow water waves is investigated. The Lie symmetry analysis is performed on the model. Employing the suitable similarity transformations, the governing model is similarity reduced to a system of nonlinear ordinary differential equations with Erdelyi-Kober ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Physics
سال: 2023
ISSN: ['2296-424X']
DOI: https://doi.org/10.3389/fphy.2023.1131007