Lie derivatives and structure Jacobi operator on real hypersurfaces in complex projective spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ - parallel

We classify real hypersurfaces in complex projective spaces whose structure Jacobi operator is Lie parallel in the direction of the structure vector field.  2004 Elsevier B.V. All rights reserved.

متن کامل

Pseudo Ricci symmetric real hypersurfaces of a complex projective space

Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.

متن کامل

biquaternions lie algebra and complex-projective spaces

in this paper, lie group structure and lie algebra structure of unit complex 3-sphere     are studied. in order to do this, adjoint representations of unit biquaternions (complexified quaternions) are obtained. also, a correspondence between the elements of     and the special complex unitary matrices    (2) is given by expressing biquaternions as 2-dimensional bicomplex numbers    .  the relat...

متن کامل

Real Hypersurfaces in Quaternionic Projective Spaces with Commuting Tangent Jacobi Operators

From the classical differential equation of Jacobi fields, one naturally defines the Jacobi operator of a Riemannian manifold with respect to any tangent vector. A straightforward computation shows that any real, complex and quaternionic space forms satisfy that any two Jacobi operators commute. In this way, we classify the real hypersurfaces in quaternionic projective spaces all of whose tange...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2017

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2016.10.004