Lie algebras admitting non-singular prederivations
نویسندگان
چکیده
منابع مشابه
Lie Algebra Prederivations and Strongly Nilpotent Lie Algebras
We study Lie algebra prederivations. A Lie algebra admitting a non-singular prederivation is nilpotent. We classify filiform Lie algebras admitting a non-singular prederivation but no non-singular derivation. We prove that any 4-step nilpotent Lie algebra admits a non-singular prederivation.
متن کاملInstitute for Mathematical Physics Singular Deformations of Lie Algebras on an Example Singular Deformations of Lie Algebras on an Example
متن کامل
Lie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملGradings of Non-graded Hamiltonian Lie Algebras
A thin Lie algebra is a Lie algebra graded over the positive integers satisfying a certain narrowness condition. We describe several cyclic grading of the modular Hamiltonian Lie algebras H(2 : n;ω2) (of dimension one less than a power of p) from which we construct infinite-dimensional thin Lie algebras. In the process we provide an explicit identification of H(2 : n;ω2) with a Block algebra. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 1997
ISSN: 0019-3577
DOI: 10.1016/s0019-3577(97)81549-2