منابع مشابه
On normalizers of maximal subfields of division algebras
Here, we investigate a conjecture posed by Amiri and Ariannejad claiming that if every maximal subfield of a division ring $D$ has trivial normalizer, then $D$ is commutative. Using Amitsur classification of finite subgroups of division rings, it is essentially shown that if $D$ is finite dimensional over its center then it contains a maximal subfield with non-trivial normalize...
متن کاملSubfields of division algebras
Let A be a finitely generated domain of GK dimension less than 3 over a field K and let Q(A) denote the quotient division algebra of A. Using the ideas of Smoktunowicz, we show that if D is a finitely generated division subalgebras of Q(A) of GK dimension at least 2, then Q(A) is finite dimensional as a left D-vector space. We use this to show that if A is a finitely generated domain of GK dime...
متن کاملCorrespondences between Valued Division Algebras and Graded Division Algebras
If D is a tame central division algebra over a Henselian valued field F , then the valuation on D yields an associated graded ring GD which is a graded division ring and is also central and graded simple over GF . After proving some properties of graded central simple algebras over a graded field (including a cohomological characterization of its graded Brauer group), it is proved that the map ...
متن کاملRecognition of division algebras
An algorithm to construct a maximal order Λ in a finite-dimensional semisimple rational algebra A is presented. The discriminants of the simple components of Λ allow one to read off the Wedderburn structure of A. If A has uniformly distributed invariants, which is the case for centralizer algebras of representations of finite groups, then it suffices to do the calculation over the rational inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 1990
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089500009447