Level Eulerian Posets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Level Eulerian Posets

The notion of level posets is introduced. This class of infinite posets has the property that between every two adjacent ranks the same bipartite graph occurs. When the adjacency matrix is indecomposable, we determine the length of the longest interval one needs to check to verify Eulerianness. Furthermore, we show that every level Eulerian poset associated to an indecomposable matrix has even ...

متن کامل

k-Eulerian Posets

A poset P is called k-Eulerian if every interval of rank k is Eulerian. The class of k-Eulerian posets interpolates between graded posets and Eulerian posets. It is a straightforward observation that a 2k-Eulerian poset is also (2k+1)-Eulerian. We prove that the ab-index of a (2k+1)Eulerian poset can be expressed in terms of c = a + b, d = ab + ba and e2k+1 = (a − b)2k+1. The proof relies upon ...

متن کامل

Flags and shellings of Eulerian cubical posets∗†

A cubical analogue of Stanley’s theorem expressing the cd-index of an Eulerian simplicial poset in terms of its h-vector is presented. This result implies that the cd-index conjecture for Gorenstein∗ cubical posets follows from Ron Adin’s conjecture on the non-negativity of his cubical h-vector for Cohen-Macaulay cubical posets. For cubical spheres the standard definition of shelling is shown t...

متن کامل

Finite Eulerian posets which are binomial or Sheffer

In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of posets are related to the theory of generating functions and to geometry. The results of this paper are organized as follows: (1) We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify factorial functions of Eulerian binomial posets; (2...

متن کامل

Characterization of the factorial functions of Eulerian binomial and Sheffer posets

We completely characterize the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n) = n! has...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2012

ISSN: 0911-0119,1435-5914

DOI: 10.1007/s00373-012-1173-z