Leighton's bounds for Sturm-Liouville eigenvalues
نویسندگان
چکیده
منابع مشابه
Multiplicity of Sturm-liouville Eigenvalues
The geometric multiplicity of each eigenvalue of a self-adjoint Sturm-Liouville problem is equal to its algebraic multiplicity. This is true for regular problems and for singular problems with limit-circle endpoints, including the case when the leading coefficient changes sign.
متن کاملExtremal Eigenvalues for a Sturm-Liouville Problem
We consider the fourth order boundary value problem (ry′′)′′+(py′)′+ qy = λwy, y(a) = y′(a) = y(b) = y′(b) = 0, which is used in a variety of physical models. For such models, the extremal values of the smallest eigenvalue help answer certain optimization problems, such as maximizing the fundamental frequency of a vibrating elastic system or finding the tallest column that will not buckle under...
متن کاملDependence of eigenvalues of Sturm-Liouville problems
The eigenvalues of Sturm-Liouville (SL) problems depend not only continuously but smoothly on boundary points. The derivative of the nth eigenvalue as a function of an endpoint satisfies a first order differential equation. This for arbitrary (separated or coupled) self-adjoint regular boundary conditions. In addition, as the length of the interval shrinks to zero all higher eigenvalues march o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1981
ISSN: 0022-247X
DOI: 10.1016/0022-247x(81)90242-0