Left perfect rings that are right perfect and a characterization of Steinitz rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On generalizations of semiperfect and perfect rings

‎We call a ring $R$ right generalized semiperfect if every simple right $R$-module is an epimorphic image of a flat right $R$-module with small kernel‎, ‎that is‎, ‎every simple right $R$-module has a flat $B$-cover‎. ‎We give some properties of such rings along with examples‎. ‎We introduce flat strong covers as flat covers which are also flat $B$-covers and give characterizations of $A$-perfe...

متن کامل

on generalizations of semiperfect and perfect rings

‎we call a ring $r$ right generalized semiperfect if every simple right $r$-module is an epimorphic image of a flat right $r$-module with small kernel‎, ‎that is‎, ‎every simple right $r$-module has a flat $b$-cover‎. ‎we give some properties of such rings along with examples‎. ‎we introduce flat strong covers as flat covers which are also flat $b$-covers and give characterizations of $a$-perfe...

متن کامل

Perfect Closures of Rings and Schemes1

0. In [3], Serre has defined the notion of a perfect variety over a field of characteristic p>0. Of course, a perfect variety is, in general, not a variety. The appropriate setting is that of schemes [2]. We show how to construct the perfect closure of a scheme, in particular, of a ring A, of characteristic p. This amounts to showing that the functor 5—>Ylom(A, B) is representable in the catego...

متن کامل

Characterizations of Semiperfect and Perfect Rings(∗)

We characterize semiperfect modules, semiperfect rings, and perfect rings using locally projective covers and generalized locally projective covers, where locally projective modules were introduced by Zimmermann-Huisgen and generalized locally projective coves are adapted from Azumaya’s generalized projective covers.

متن کامل

On n-Perfect Rings and Cotorsion Dimension

A ring is called n-perfect (n ≥ 0), if every flat module has projective dimension less or equal than n. In this paper, we show that the n-perfectness relate, via homological approach, some homological dimension of rings. We study n-perfectness in some known ring constructions. Finally, several examples of n-perfect rings satisfying special conditions are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1972

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1972-0289571-9