Left Invariant Lifted (α, β)-metrics of Douglas Type on Tangent Lie Groups

نویسندگان

چکیده

In this paper we study lifted left invariant $(\alpha,\beta)$-metrics of Douglas type on tangent Lie groups. Let $G$ be a group equipped with $(\alpha,\beta)$-metric $F$, induced by Riemannian metric $g$. Using vertical and complete lifts, construct the $F^v$ $F^c$ $TG$ give necessary sufficient conditions for them to type. Then, flag curvature these metrics are studied. Finally, as some special cases, curvatures in cases Randers type, Kropina Matsumoto Berwald given.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A remark on left invariant metrics on compact Lie groups

The investigation of manifolds with non-negative sectional curvature is one of the classical fields of study in global Riemannian geometry. While there are few known obstruction for a closed manifold to admit metrics of non-negative sectional curvature, there are relatively few known examples and general construction methods of such manifolds (see [Z] for a detailed survey). In this context, it...

متن کامل

Left Invariant Contact Structures on Lie Groups

A result from Gromov ensures the existence of a contact structure on any connected non-compact odd dimensional Lie group. But in general such structures are not invariant under left translations. The problem of finding which Lie groups admit a left invariant contact structure (contact Lie groups), is then still wide open. We perform a ‘contactization’ method to construct, in every odd dimension...

متن کامل

Invariant Metrics with Nonnegative Curvature on Compact Lie Groups

We classify the left-invariant metrics with nonnegative sectional curvature on SO(3) and U(2).

متن کامل

Techniques for Classifying Nonnegatively Curved Left-invariant Metrics on Compact Lie Groups

We provide techniques for studying the nonnegatively curved leftinvariant metrics on a compact Lie group. For “straight” paths of left-invariant metrics starting at bi-invariant metrics and ending at nonnegatively curved metrics, we deduce a nonnegativity property of the initial derivative of curvature. We apply this result to obtain a partial classification of the nonnegatively curved left-inv...

متن کامل

on einstein (α,β )-metrics

– in this paper we consider some (α ,β ) -metrics such as generalized kropina, matsumoto and f (α β )2α = + metrics, and obtain necessary and sufficient conditions for them to be einstein metrics when βis a constant killing form. then we prove with this assumption that the mentioned einstein metrics must beriemannian or ricci flat.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics Analysis Geometry

سال: 2021

ISSN: ['1812-9471', '1817-5805']

DOI: https://doi.org/10.15407/mag17.02.201