Left general fractional monotone approximation theory
نویسندگان
چکیده
منابع مشابه
General uniqueness and monotone iterative technique for fractional differential equations
In this paper, the general existence and uniqueness result is proved which exhibits the idea of comparison principle. This result is also valid for fractional differential equations in a Banach space. The well-known monotone iterative technique is then extended for fractional differential equations which provides computable monotone sequences that converge to the extremal solutions in a sector ...
متن کاملThree-monotone spline approximation
For r ≥ 3, n ∈ N and each 3-monotone continuous function f on [a, b] (i.e., f is such that its third divided differences [x0, x1, x2, x3] f are nonnegative for all choices of distinct points x0, . . . , x3 in [a, b]), we construct a spline s of degree r and of minimal defect (i.e., s ∈ Cr−1[a, b]) with n −1 equidistant knots in (a, b), which is also 3-monotone and satisfies ‖ f − s‖L∞[a,b] ≤ cω...
متن کاملMonotone trigonometric approximation
Let f ∈ C[−ω, ω], 0 < ω < π, be nonlinear and nondecreasing. We wish to estimate the degree of approximation of f by trigonometric polynomials that are nondecreasing in [−ω, ω]. We obtain estimates involving the second modulus of smoothness of f and show that one in general cannot have estimates with the third modulus of smoothness.
متن کاملIntrinsic Diophantine Approximation on Manifolds: General Theory
We investigate the question of how well points on a nondegenerate k-dimensional submanifold M ⊆ Rd can be approximated by rationals also lying on M , establishing an upper bound on the “intrinsic Dirichlet exponent” for M . We show that relative to this exponent, the set of badly intrinsically approximable points is of full dimension and the set of very well intrinsically approximable points is...
متن کاملLikelihood Based Inference For Monotone Functions: Towards a General Theory
The behavior of maximum likelihood estimates (MLE’s) and the likelihood ratio statistic in a family of problems involving pointwise nonparametric estimation of a monotone function is studied. This class of problems differs radically from the usual parametric or semiparametric situations in that the MLE of the monotone function at a point converges to the truth at rate n (slower than the usual √...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicationes Mathematicae
سال: 2016
ISSN: 1233-7234,1730-6280
DOI: 10.4064/am2264-12-2015