Leavitt path algebras of labelled graphs

نویسندگان

چکیده

A Leavitt labelled path algebra over a commutative unital ring is associated with space, generalizing algebras graphs and ultragraphs as well torsion-free generated by idempotents. We show that can be realized partial skew group rings, Steinberg algebras, Cuntz-Pimsner algebras. Via these realizations we obtain generalized uniqueness theorems, description of diagonal preserving isomorphisms characterize simplicity In addition, prove large class rings

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Leavitt path algebras of arbitrary graphs

We extend the notion of the Leavitt path algebra of a graph E to include all directed graphs. We show how various ring-theoretic properties of these more general structures relate to the corresponding properties of Leavitt path algebras of row-finite graphs. Specifically, we identify those graphs for which the corresponding Leavitt path algebra is simple; purely infinite simple; exchange; and s...

متن کامل

Weakly Noetherian Leavitt Path Algebras

We study row-finite Leavitt path algebras. We characterize the row-finite graphs E for which the Leavitt path algebra is weakly Noetherian. Our main result is that a Leavitt path algebra is weakly Noetherian if and only if there is ascending chain condition on the hereditary and saturated closures of the subsets of the vertices of the graph E.

متن کامل

Socle Theory for Leavitt Path Algebras of Arbitrary Graphs

The main aim of the paper is to give a socle theory for Leavitt path algebras of arbitrary graphs. We use both the desingularization process and combinatorial methods to study Morita invariant properties concerning the socle and to characterize it, respectively. Leavitt path algebras with nonzero socle are described as those which have line points, and it is shown that the line points generate ...

متن کامل

Algebras of Quotients of Leavitt Path Algebras

We start this paper by showing that the Leavitt path algebra of a (row-finite) graph is an algebra of quotients of the corresponding path algebra. The path algebra is semiprime if and only if whenever there is a path connecting two vertices, there is another one in the opposite direction. Semiprimeness is studied because, for acyclic graphs, the Leavitt path algebra is a Fountain-Gould algebra ...

متن کامل

Chain Conditions for Leavitt Path Algebras

In this paper, results known about the artinian and noetherian conditions for the Leavitt path algebras of graphs with finitely many vertices are extended to all row-finite graphs. In our first main result, necessary and sufficient conditions on a row-finite graph E are given so that the corresponding (not necessarily unital) Leavitt path K-algebra L(E) is semisimple. These are precisely the al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2023

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2023.04.009