Least squares approximation in Bayesian analysis
نویسندگان
چکیده
منابع مشابه
Least Squares Approximation
In many applications we want to find an approximation for a function, for example for differential equations. Example problem: We want to understand how a calculator or computer can evaluate sinx for a given value x. The processor can essentially only perform addition, multiplication, division. Therefore we can try to approximate the function with a polynomial. We use the notation Pn for polyno...
متن کاملLeast-squares polynomial approximation
We construct symmetric polar WAMs (Weakly Admissible Meshes) with low cardinality for least-squares polynomial approximation on the disk. These are then mapped to an arbitrary triangle. Numerical tests show that the growth of the least-squares projection uniform norm is much slower than the theoretical bound, and even slower than that of the Lebesgue constant of the best known interpolation poi...
متن کاملFaster Least Squares Approximation
Least squares approximation is a technique to find an approximate solution to a system of linear equations that has no exact solution. In a typical setting, one lets n be the number of constraints and d be the number of variables, with n d. Then, existing exact methods find a solution vector in O(nd2) time. We present two randomized algorithms that provide accurate relative-error approximations...
متن کاملMoving Least Squares Approximation
An alternative to radial basis function interpolation and approximation is the so-called moving least squares method. As we will see below, in this method the approximation Pf to f is obtained by solving many (small) linear systems, instead of via solution of a single – but large – linear system as we did in the previous chapters. To make a connection with the previous chapters we start with th...
متن کاملRank based Least-squares Independent Component Analysis
In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Trabajos de Estadistica Y de Investigacion Operativa
سال: 1980
ISSN: 0041-0241
DOI: 10.1007/bf02888352