Learning Poisson Binomial Distributions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Powers of Poisson Binomial Distributions

We introduce the problem of simultaneously learning all powers of a Poisson Binomial Distribution (PBD). A PBD over {1, . . . , n} is the distribution of a sum X = ∑n i=1 Xi, of n independent Bernoulli 0/1 random variables Xi, where E[Xi] = pi. The k’th power of this distribution, for k in a range {1, . . . ,m}, is the distribution of Pk = ∑n i=1 X (k) i , where each Bernoulli random variable X...

متن کامل

Testing Poisson Binomial Distributions

A Poisson Binomial distribution over n variables is the distribution of the sum of n independent Bernoullis. We provide a sample near-optimal algorithm for testing whether a distribution P supported on {0, . . . , n} to which we have sample access is a Poisson Binomial distribution, or far from all Poisson Binomial distributions. The sample complexity of our algorithm is O(n) to which we provid...

متن کامل

Properly Learning Poisson Binomial Distributions in Almost Polynomial Time

We give an algorithm for properly learning Poisson binomial distributions. A Poisson binomial distribution (PBD) of order n ∈ Z+ is the discrete probability distribution of the sum of n mutually independent Bernoulli random variables. Given Õ(1/ǫ) samples from an unknown PBD P, our algorithm runs in time (1/ǫ) , and outputs a hypothesis PBD that is ǫ-close to P in total variation distance. The ...

متن کامل

Binomial and Poisson distributions as maximum entropy distributions

The binomial and the Poisson distributions are shown to be maximum entropy distributions of suitably defined sets. Poisson’s law is considered as a case of entropy maximization, and also convergence in information divergence is established.

متن کامل

Asymptotic Expansion for Inverse Moments of Binomial and Poisson Distributions

An asymptotic expansion for inverse moments of positive binomial and Poisson distributions is derived. The expansion coefficients of the asymptotic series are given by the positive central moments of the distribution. Compared to previous results, a single expansion formula covers all (also non-integer) inverse moments. In addition, the approach can be generalized to other positive distributions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithmica

سال: 2015

ISSN: 0178-4617,1432-0541

DOI: 10.1007/s00453-015-9971-3