Learning model-free robot control by a Monte Carlo EM algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning model-free robot control by a Monte Carlo EM algorithm

We address the problem of learning robot control by model-free reinforcement learning (RL). We adopt the probabilistic model of Vlassis and Toussaint (2009) for model-free RL, and we propose a Monte Carlo EM algorithm (MCEM) for control learning that searches directly in the space of controller parameters using information obtained from randomly generated robot trajectories. MCEM is related to,...

متن کامل

Implementations of the Monte Carlo EM Algorithm

The Monte Carlo EM (MCEM) algorithm is a modification of the EM algorithm where the expectation in the E-step is computed numerically through Monte Carlo simulations. The most flexible and generally applicable approach to obtaining a Monte Carlo sample in each iteration of an MCEM algorithm is through Markov chain Monte Carlo (MCMC) routines such as the Gibbs and Metropolis–Hastings samplers. A...

متن کامل

Monte Carlo Hierarchical Model Learning

Reinforcement learning (RL) is a well-established paradigm for enabling autonomous agents to learn from experience. To enable RL to scale to any but the smallest domains, it is necessary to make use of abstraction and generalization of the state-action space, for example with a factored representation. However, to make effective use of such a representation, it is necessary to determine which s...

متن کامل

Ascent-Based Monte Carlo EM

The EM algorithm is a popular tool for maximizing likelihood functions in the presence of missing data. Unfortunately, EM often requires the evaluation of analytically intractable and high-dimensional integrals. The Monte Carlo EM (MCEM) algorithm is the natural extension of EM that employs Monte Carlo methods to estimate the relevant integrals. Typically, a very large Monte Carlo sample size i...

متن کامل

S-Learning: A Model-Free, Case-Based Algorithm for Robot Learning and Control

Amodel-free, case-based learning and control algorithm called S-learning is described as implemented in a simulation of a light-seeking mobile robot. S-learning demonstrated learning of robotic and environmental structure sufficient to allow it to achieve its goal (reaching a light source). No modeling information about the task or calibration information about the robot’s actuators and sensors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Autonomous Robots

سال: 2009

ISSN: 0929-5593,1573-7527

DOI: 10.1007/s10514-009-9132-0