Learning linkages: Integrating data streams of multiple modalities and timescales
نویسندگان
چکیده
منابع مشابه
the effects of integrating cooperative learning into vocabulary learning of elementary school students
the purpose of the research is to examine if integrating cooperative learning into vocabulary learning helps to increase word recognition of students in an elementary school in iran. it tries to investigate whether cooperative learning approach enables students to improve their language learning. this research used stad (students team achievement division) as a cooperative model in this study. ...
15 صفحه اولMODS: Multiple One-class Data Streams Learning from Homogeneous Data
This paper presents a novel approach, called MODS, to build an accurate time evolving classifier from multiple one-class data streams learning time evolving classifier. Our proposed MODS approach works in two steps. In the first step, we first construct local one-class classifiers on the labeled positive examples from each sub-data stream respectively. We then collect the informative examples (...
متن کاملLearning Multiple Timescales in Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are powerful architectures for sequence learning. Recent advances on the vanishing gradient problem have led to improved results and an increased research interest. Among recent proposals are architectural innovations that allow the emergence of multiple timescales during training. This paper explores a number of architectures for sequence generation and predict...
متن کاملAn approach to online Bayesian learning from multiple data streams
We present a collective approach to mine Bayesian networks from distributed heterogenous web-log data streams. In this approach we first learn a local Bayesian network at each site using the local data. Then each site identifies the observations that are most likely to be evidence of coupling between local and non-local variables and transmits a subset of these observations to a central site. A...
متن کاملLearning from Data Streams
In the last two decades, machine learning research and practice has focused on batch learning usually with small datasets. In batch learning, the whole training data is available to the algorithm that outputs a decision model after processing the data eventually (or most of the times) multiple times. The rationale behind this practice is that examples are generated at random accordingly to some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer Assisted Learning
سال: 2018
ISSN: 0266-4909,1365-2729
DOI: 10.1111/jcal.12315