Learning intersections and thresholds of halfspaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Intersections and Thresholds of Halfspaces

We give the first polynomial time algorithm to learn any function of a constant number of halfspaces under the uniform distribution on the Boolean hypercube to within any constant error parameter. We also give the first quasipolynomial time algorithm for learning any Boolean function of a polylog number of polynomial-weight halfspaces under any distribution on the Boolean hypercube. As special ...

متن کامل

Learning Intersections of Halfspaces with a Margin

We give a new algorithm for learning intersections of halfspaces with a margin, i.e. under the assumption that no example lies too close to any separating hyperplane. Our algorithm combines random projection techniques for dimensionality reduction, polynomial threshold function constructions, and kernel methods. The algorithm is fast and simple. It learns a broader class of functions and achiev...

متن کامل

Improved Lower Bounds for Learning Intersections of Halfspaces

We prove new lower bounds for learning intersections of halfspaces, one of the most important concept classes in computational learning theory. Our main result is that any statistical-query algorithm for learning the intersection of √ n halfspaces in n dimensions must make 2 √ n) queries. This is the first non-trivial lower bound on the statistical query dimension for this concept class (the pr...

متن کامل

Cryptographic Hardness Results for Learning Intersections of Halfspaces

We give the first representation-independent hardness results for PAC learning intersections of halfspaces, a central concept class in computational learning theory. Our hardness results are derived from two public-key cryptosystems due to Regev, which are based on the worstcase hardness of well-studied lattice problems. Specifically, we prove that a polynomial-time algorithm for PAC learning i...

متن کامل

Hardness of learning noisy halfspaces using polynomial thresholds

We prove the hardness of weakly learning halfspaces in the presence of adversarial noise using polynomial threshold functions (PTFs). In particular, we prove that for any constants d ∈ Z and ε > 0, it is NP-hard to decide: given a set of {−1, 1}-labeled points in Rn whether (YES Case) there exists a halfspace that classifies (1−ε)-fraction of the points correctly, or (NO Case) any degree-d PTF ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer and System Sciences

سال: 2004

ISSN: 0022-0000

DOI: 10.1016/j.jcss.2003.11.002