منابع مشابه
Secondary Motor Cortex: Where 'Sensory' Meets 'Motor' in the Rodent Frontal Cortex.
In rodents, the medial aspect of the secondary motor cortex (M2) is known by other names, including medial agranular cortex (AGm), medial precentral cortex (PrCm), and frontal orienting field (FOF). As a subdivision of the medial prefrontal cortex (mPFC), M2 can be defined by a distinct set of afferent and efferent connections, microstimulation responses, and lesion outcomes. However, the behav...
متن کاملNeutralization of Nogo-A enhances synaptic plasticity in the rodent motor cortex and improves motor learning in vivo.
The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acu...
متن کاملSuppression of ipsilateral motor cortex facilitates motor skill learning.
The primary motor cortex (M1) plays a critical role in early aspects of motor skill learning. Given the notion of inter-hemispheric competition, unilateral disruption of M1 may increase excitability of the unaffected motor cortex and thus improve motor learning with the ipsilateral hand. We applied slow-frequency repetitive transcranial magnetic stimulation (rTMS) before the initiation of pract...
متن کاملPrimary motor cortex disinhibition during motor skill learning.
Motor learning requires practice over a period of time and depends on brain plasticity, yet even for relatively simple movements, there are multiple practice strategies that can be used for skill acquisition. We investigated the role of intracortical inhibition in the primary motor cortex (M1) during motor skill learning. Event-related transcranial magnetic stimulation (TMS) was used to assess ...
متن کاملLocal application of dopamine inhibits pyramidal tract neuron activity in the rodent motor cortex.
Cortical neurons respond in a variety of ways to locally applied dopamine, perhaps because of the activation of different receptors within or among subpopulations of cells. This study was conducted to assess the effects of dopamine and the receptor subtypes that mediate the responses of a specific population of neurons, the pyramidal tract neurons (PTNs) in the rodent motor cortex. The specific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annual Review of Neuroscience
سال: 2017
ISSN: 0147-006X,1545-4126
DOI: 10.1146/annurev-neuro-072116-031407