Learning Document Embeddings Along With Their Uncertainties
نویسندگان
چکیده
منابع مشابه
Predicting Machine Translation Adequacy with Document Embeddings
This paper describes USAAR’s submission to the the metrics shared task of the Workshop on Statistical Machine Translation (WMT) in 2015. The goal of our submission is to take advantage of the semantic overlap between hypothesis and reference translation for predicting MT output adequacy using language independent document embeddings. The approach presented here is learning a Bayesian Ridge Regr...
متن کاملImproving Document Ranking with Dual Word Embeddings
This paper investigates the popular neural word embedding method Word2vec as a source of evidence in document ranking. In contrast to NLP applications of word2vec, which tend to use only the input embeddings, we retain both the input and the output embeddings, allowing us to calculate a different word similarity that may be more suitable for document ranking. We map the query words into the inp...
متن کاملLearning Concept-Driven Document Embeddings for Medical Information Search
Many medical tasks such as self-diagnosis, health-care assessment, and clinical trial patient recruitment involve the usage of information access tools. A key underlying step to achieve such tasks is the document-to-document matching which mostly fails to bridge the gap identified between raw level representations of information in documents and high-level human interpretation. In this paper, w...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملLearning with Memory Embeddings
Embedding learning, a.k.a. representation learning, has been shown to be able to model large-scale semantic knowledge graphs. A key concept is a mapping of the knowledge graph to a tensor representation whose entries are predicted by models using latent representations of generalized entities. Latent variable models are well suited to deal with the high dimensionality and sparsity of typical kn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE/ACM Transactions on Audio, Speech, and Language Processing
سال: 2020
ISSN: 2329-9290,2329-9304
DOI: 10.1109/taslp.2020.3012062