Learning Deep Transferability for Several Agricultural Classification Problems
نویسندگان
چکیده
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملDeep vs. Diverse Architectures for Classification Problems
This study compares various superlearner and deep learning architectures (machinelearning-based and neural-network-based) for classification problems across several simulated and industrial datasets to assess performance and computational efficiency, as both methods have nice theoretical convergence properties. Superlearner formulations outperform other methods at small to moderate sample sizes...
متن کاملDeep Super Learner: A Deep Ensemble for Classification Problems
Deep learning has become very popular for tasks such as predictive modeling and pattern recognition in handling big data. Deep learning is a powerful machine learning method that extracts lower level features and feeds them forward for the next layer to identify higher level features that improve performance. However, deep neural networks have drawbacks, which include many hyper-parameters and ...
متن کاملAnalyzing Applications and Problems of Blended Learning (BL) for Agricultural Students
This study was an attempt to analyze the applications and problems of conducting blended learning (BL) in view point of the agricultural students from Bu-Ali Sina University. The study has employed a surveying methodology with interviewing and included a combination of descriptive and quantitative research methods. Statistical population of the study included 500 agricultural students from Bu-A...
متن کاملDeep Learning Architectures for Hard Character Classification
Recent research indicates that deep learning has achieved noticeably promising results in a wide range of areas such as computer vision, speech recognition and natural language processing. This paper offers an empirical study on the use of deep learning techniques for hard characters recognition on the notMNIST dataset. The MNIST dataset has been widely used for training and testing in the fiel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Computer Science and Applications
سال: 2019
ISSN: 2156-5570,2158-107X
DOI: 10.14569/ijacsa.2019.0100107