Laser Beam Welding of AA5052, AA5083, and AA6061 Aluminum Alloys
نویسندگان
چکیده
منابع مشابه
Laser Welding of Magnesium Alloys
Aiming at establishing a reliable welding technique for magnesium alloys, the laser weldability of different types of magnesium alloys has been investigated using a high-brightness disc laser. It was found that high quality joints could be fabricated in the case of wrought type alloys when a certain defocusing level was optimized for the employed high-brightness laser beam of the newly develope...
متن کاملLaser Welding of Thin Sheet Magnesium Alloys
Magnesium and its alloys are active materials, and the oxide can easily form when they react with air and moisture (Czerwinski 2002). In addition, magnesium and its alloys are flammable and require strict safeguards during the manufacturing process. These disadvantages make the processing of magnesium alloys into finished products more challenging. These drawbacks cause defects such as cracks, ...
متن کاملImproving Laser Beam Welding Efficiency
Laser beam welding is becoming widely used in many industrial applications. This paper reviews recent research conducted on the performance, potential and problems of thick section butt joint laser welding. Common defects that occur in laser beam welding with high power laser welding are discussed and possible solutions proposed. Methods of welding process efficiency improvement are analyzed.
متن کاملLiquation Cracking of Dissimilar Aluminum Alloys during Friction Stir Welding
A liquation cracking mechanism of dissimilar Al alloys during the friction stir welding (FSW) is suggested in this study. To identify the mechanism, the precipitates were analyzed and Al-Mg-Cu phase diagrams were calculated. Electron backscattering diffraction (EBSD) analysis and electron probe microanalysis (EPMA) were also conducted. In the same manner as constitutional liquation, at high hea...
متن کاملNumerical simulation of laser beam welding of Ti6Al4V sheet
This paper was aimed to report the 3D finite element analysis simulation of laser welding process of Ti6Al4V 1.7 mm sheets in butt joint in order to predict the temperature distribution, hardness, and weld geometry. The butt-joint welds were made using CO2 laser with the maximum power of 2.2 kW in the continuous wave mode. A part of the experimental work was carried out to verify the weld geome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Materials Science and Engineering
سال: 2009
ISSN: 1687-8434,1687-8442
DOI: 10.1155/2009/974182