Larger Carmichael numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carmichael numbers and pseudoprimes

We now establish a pleasantly simple description of Carmichael numbers, due to Korselt. First, we need the following notion. Let a and p be coprime (usually, p will be prime, but this is not essential). The order of a modulo p, denoted by ordp(a), is the smallest positive integer m such that a ≡ 1 mod p. Recall [NT4.5]: If ordp(a) = m and r is any integer such that a ≡ 1 mod p, then r is a mult...

متن کامل

Higher-order Carmichael numbers

We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZalgebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indica...

متن کامل

Sierpiński and Carmichael numbers

We establish several related results on Carmichael, Sierpiński and Riesel numbers. First, we prove that almost all odd natural numbers k have the property that 2nk + 1 is not a Carmichael number for any n ∈ N; this implies the existence of a set K of positive lower density such that for any k ∈ K the number 2nk + 1 is neither prime nor Carmichael for every n ∈ N. Next, using a recent result of ...

متن کامل

There Are Innnitely Many Carmichael Numbers Larger Values Were Subsequently Found

Fermat wrote in a letter to Frenicle, that whenever p is prime, p divides a p?1 ? 1 for all integers a not divisible by p, a result now known as Fermat's `little theorem'. An equivalent formulation is the assertion that p divides a p ? a for all integers a, whenever p is prime. The question naturally arose as to whether the primes are the only integers exceeding 1 that satisfy this criterion, b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1982

ISSN: 0898-1221

DOI: 10.1016/0898-1221(82)90044-x