Large scale instance matching via multiple indexes and candidate selection
نویسندگان
چکیده
منابع مشابه
Large scale instance matching via multiple indexes and candidate selection
Instance Matching aims to discover the linkage between different descriptions of real objects across heterogeneous data sources. With the rapid development of Semantic Web, especially of the linked data, automatically instance matching has been become the fundamental issue for ontological data sharing and integration. Instances in the ontologies are often in large scale, which contains millions...
متن کاملMultiple-Instance Learning with Instance Selection via Dominant Sets
Multiple-instance learning (MIL) deals with learning under ambiguity, in which patterns to be classified are described by bags of instances. There has been a growing interest in the design and use of MIL algorithms as it provides a natural framework to solve a wide variety of pattern recognition problems. In this paper, we address MIL from a view that transforms the problem into a standard supe...
متن کاملRevisiting Multiple-Instance Learning Via Embedded Instance Selection
Multiple-Instance Learning via Embedded Instance Selection (MILES) is a recently proposed multiple-instance (MI) classification algorithm that applies a single-instance base learner to a propositionalized version of MI data. However, the original authors consider only one single-instance base learner for the algorithm — the 1-norm SVM. We present an empirical study investigating the efficacy of...
متن کاملInstance selection for simplified decision trees through the generation and selection of instance candidate subsets
vi CHAPTER
متن کاملMultiple-Instance Learning: Multiple Feature Selection on Instance Representation
In multiple-Instance Learning (MIL), training class labels are attached to sets of bags composed of unlabeled instances, and the goal is to deal with classification of bags. Most previous MIL algorithms, which tackle classification problems, consider each instance as a represented feature. Although the algorithms work well in some prediction problems, considering diverse features to represent a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge-Based Systems
سال: 2013
ISSN: 0950-7051
DOI: 10.1016/j.knosys.2013.06.004