Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e5147" altimg="si902.svg"><mml:mrow><mml:mi>I</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> cointegrated factors

نویسندگان

چکیده

We study a large-dimensional Dynamic Factor Model where: (i) the vector of factors F t is I ( 1 ) and driven by number shocks that smaller than dimension ; and, (ii) idiosyncratic components are either or 0 . Under (i), cointegrated can be modeled as Vector Error Correction (VECM). (ii), we provide consistent estimators, both cross-sectional size n time T go to infinity, for factors, loadings, shocks, coefficients VECM therefore Impulse–Response Functions (IRF) observed variables shocks. Furthermore, possible deterministic linear trends fully accounted for, case an unrestricted VAR in levels , instead VECM, also studied. The finite-sample properties proposed estimators explored means MonteCarlo exercise. Finally, revisit two distinct widely studied empirical applications. By correctly modeling long-run dynamics our results partly overturn those obtained recent literature. Specifically, find that: oil price have just temporary effect on US real activity; response positive news shock, economy first experiences significant boom, then milder recession.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Factor Models of Large Dimensions A Comparison of Estimation Methods for Dynamic Factor Models of Large Dimensions

The estimation of dynamic factor models for large sets of variables has attracted considerable attention recently, due to the increased availability of large datasets. In this paper we propose a new methodology for estimating factors from large datasets based on state space models, discuss its theoretical properties and compare its performance with that of two alternative estimation approaches ...

متن کامل

Estimating the Number of Factors in Large Dimensional Factor Models

This paper develops a new spectral approach to the estimation of the number of latent factors in large dimensional factor models. It shows that by imposing restrictions on the error terms we can derive a consistent procedure with improved finite sample performance in the presence of weak factors. The paper uses free probability theory to derive analytic expressions for the limiting moments of t...

متن کامل

infinite dimensional garch models

مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...

15 صفحه اول

Efficiency in Large Dynamic Panel Models with Common Factor

This paper deals with asymptotically efficient estimation in exchangeable nonlinear dynamic panel models with common unobservable factor. These models are especially relevant for applications to large portfolios of credits, corporate bonds, or life insurance contracts, and are recommended in the current regulation in Finance (Basel II and Basel III) and Insurance (Solvency II). The specificatio...

متن کامل

Interpreting Cointegrated Models

Error-correction models for cointegrated economic variables are commonly interpreted as reflecting partial adjustment of one variable to another. We show that error-correction models may also arise because one variable forecasts another. Reduced-form estimates of error-correction models cannot be used to distinguish these interpretations. In an application, we show that the estimated coefficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2021

ISSN: ['1872-6895', '0304-4076']

DOI: https://doi.org/10.1016/j.jeconom.2020.05.004