Large Deviation Principle and Inviscid Shell Models
نویسندگان
چکیده
منابع مشابه
Large Deviation Principle and Inviscid Shell Models
A LDP is proved for the inviscid shell model of turbulence. As the viscosity coefficient ν converges to 0 and the noise intensity is multiplied by ν , we prove that some shell models of turbulence with a multiplicative stochastic perturbation driven by a H-valued Brownian motion satisfy a LDP in ([0, T],V ) for the topology of uniform convergence on [0, T], but where V is endowed with a topolog...
متن کاملM ay 2 00 9 LARGE DEVIATION PRINCIPLE AND INVISCID SHELL MODELS
A LDP is proved for the inviscid shell model of turbulence. As the viscosity coefficient ν converges to 0 and the noise intensity is multiplied by √ ν, we prove that some shell models of turbulence with a multiplicative stochastic perturbation driven by a H-valued Brownian motion satisfy a LDP in C([0, T ], V) for the topology of uniform convergence on [0, T ], but where V is endowed with a top...
متن کاملLarge Deviation Principle for General Occupancy Models
We use process level large deviation analysis to obtain the rate function for a general family of occupancy problems. Our interest is the asymptotics of the empirical distributions of various quantities (such as the fraction of urns that contain a given number of balls). In the general setting, balls are allowed to land in a given urn depending on the urn’s contents prior to the throw. We discu...
متن کاملInviscid Large deviation principle and the 2D Navier Stokes equations with a free boundary condition
Using a weak convergence approach, we prove a LPD for the solution of 2D stochastic Navier Stokes equations when the viscosity converges to 0 and the noise intensity is multiplied by the square root of the viscosity. Unlike previous results on LDP for hydrodynamical models, the weak convergence is proven by tightness properties of the distribution of the solution in appropriate functional spaces.
متن کاملRegularity of inviscid shell models of turbulence.
In this paper we continue the analytical study of the sabra shell model of energy turbulent cascade. We prove the global existence of weak solutions of the inviscid sabra shell model, and show that these solutions are unique for some short interval of time. In addition, we prove that the solutions conserve energy, provided that the components of the solution satisfy /u(n)/ <or= Ck(n)(-1/3)[squa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Probability
سال: 2009
ISSN: 1083-6489
DOI: 10.1214/ejp.v14-719