Lagrangian single-particle turbulent statistics through the Hilbert-Huang transform
نویسندگان
چکیده
منابع مشابه
Lagrangian single-particle turbulent statistics through the Hilbert-Huang transform.
The Hilbert-Huang transform is applied to analyze single-particle Lagrangian velocity data from numerical simulations of hydrodynamic turbulence. The velocity trajectory is described in terms of a set of intrinsic mode functions C(i)(t) and of their instantaneous frequency ω(i)(t). On the basis of this decomposition we define the ω-conditioned statistical moments of the C(i) modes, named q-orde...
متن کاملOn Lagrangian single-particle statistics
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version ...
متن کاملOn the Hilbert-Huang Transform Theoretical Developments
One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent the Fast Fourier Transform (FFT). Both carry strong a-priori assumptions about the source data, such as linearity, of being stationary, and of satisfjmg the Dirichlet conditions. A recent development at the National Aeronautics an...
متن کاملThe Hilbert-Huang Transform: theory, applications, development
Hilbert-Huang Transform (HHT) is a data analysis tool, first developed in 1998, which can be used to extract the periodic components embedded within oscillatory data. This thesis is dedicated to the understanding, application, and development of this tool. First, the background theory of HHT will be described and compared with other spectral analysis tools. Then, a number of applications will b...
متن کاملHyperspectral Image Analysis Using Hilbert-huang Transform
ABSTRACT: Hyperspectral images, which contain rich and fine spectral information, can improve land use/cover classification accuracy, while traditional statistics-based classifiers cannot be directly used on such images with limited training samples. The commonly used method to solve this problem is dimensionality reduction, and this can be done by feature extraction for hyperspectral images. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2013
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.87.041003