Lagrange geometry of second order

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrent metrics in the geometry of second order differential equations

Given a pair (semispray $S$, metric $g$) on a tangent bundle, the family of nonlinear connections $N$ such that $g$ is recurrent with respect to $(S, N)$ with a fixed recurrent factor is determined by using the Obata tensors. In particular, we obtain a characterization for a pair $(N, g)$ to be recurrent as well as for the triple $(S, stackrel{c}{N}, g)$ where $stackrel{c}{N}$ is the canonical ...

متن کامل

Lagrange Geometry via Complex Lagrange Geometry

Asking that the metric of a complex Finsler space should be strong convex, Abate and Patrizio ([1]) associate to the real tangent bundle a real Finsler metric for which they analyze the relation between Cartan (real) connection of the obtained space and the real image of Chern-Finsler complex connection. Following the same ideas, in the present paper we shall deal with the more general case of ...

متن کامل

recurrent metrics in the geometry of second order differential equations

given a pair (semispray $s$, metric $g$) on a tangent bundle, the family of nonlinear connections $n$ such that $g$ is recurrent with respect to $(s, n)$ with a fixed recurrent factor is determined by using the obata tensors. in particular, we obtain a characterization for a pair $(n, g)$ to be recurrent as well as for the triple $(s, stackrel{c}{n}, g)$ where $stackrel{c}{n}$ is the canonical ...

متن کامل

Time-fixed geometry of 2nd order ODEs

Abstract : Let be a 2nd order ODE. By Cartan equivalence method, we will study the local equivalence problem under the transformations group of time-fixed coordinates. We are going to solve this problem by an applicable method which has been recognized by R. Gardner, and classify them.   

متن کامل

Lagrange Geometry on Tangent Manifolds

Lagrange geometry is the geometry of the tensor field defined by the fiberwise Hessian of a nondegenerate Lagrangian function on the total space of a tangent bundle. Finsler geometry is the geometrically most interesting case of Lagrange geometry. In this paper, we study a generalization which consists of replacing the tangent bundle by a general tangent manifold, and the Lagrangian by a family...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 1994

ISSN: 0895-7177

DOI: 10.1016/0895-7177(94)90155-4