Krull dimension and regularity of binomial edge ideals of block graphs
نویسندگان
چکیده
منابع مشابه
The Regularity of Binomial Edge Ideals of Graphs
We prove two recent conjectures on some upper bounds for the Castelnuovo-Mumford regularity of the binomial edge ideals of some different classes of graphs. We prove the conjecture of Matsuda and Murai for chordal graphs. We also prove the conjecture due to the authors for a class of chordal graphs. We determine the regularity of the binomial edge ideal of the join of graphs in terms of the reg...
متن کاملBinomial Edge Ideals of Graphs
We characterize all graphs whose binomial edge ideals have a linear resolution. Indeed, we show that complete graphs are the only graphs with this property. We also compute some graded components of the first Betti number of the binomial edge ideal of a graph with respect to the graphical terms. Finally, we give an upper bound for the Castelnuovo-Mumford regularity of the binomial edge ideal of...
متن کاملOn the binomial edge ideals of block graphs
We find a class of block graphs whose binomial edge ideals have minimal regularity. As a consequence, we characterize the trees whose binomial edge ideals have minimal regularity. Also, we show that the binomial edge ideal of a block graph has the same depth as its initial ideal.
متن کاملRegularity Bounds for Binomial Edge Ideals
We show that the Castelnuovo–Mumford regularity of the binomial edge ideal of a graph is bounded below by the length of its longest induced path and bounded above by the number of its vertices.
متن کاملRegularity of second power of edge ideals
Let G be a graph with edge ideal I(G). Benerjee and Nevo proved that for every graph G, the inequality reg(I(G)2)≤reg(I(G))+2 holds. We provide an alternative proof for this result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra and Its Applications
سال: 2019
ISSN: 0219-4988,1793-6829
DOI: 10.1142/s0219498820501339