Koopman wavefunctions and classical states in hybrid quantum–classical dynamics
نویسندگان
چکیده
We deal with the reversible dynamics of coupled quantum and classical systems. Based on a recent proposal by authors, we exploit theory hybrid quantum–classical wavefunctions to devise closure model for in which both density matrix Liouville distribution retain their initial positive sign. In this way, evolution allows identifying state interaction at all times, thereby addressing series stringent consistency requirements. After combining Koopman's Hilbert-space method mechanics van Hove's unitary representations prequantum theory, is made available variational structure underlying suitable wavefunction factorization. Also, use Poisson reduction symmetry show that possesses noncanonical does not seem have appeared before. As an example, specialized case two-level
منابع مشابه
Hybrid classical-quantum dynamics
A hybrid formalism is proposed for interacting classical and quantum sytems. This formalism is mathematically consistent and reduces to standard classical and quantum mechanics in the case of no interaction. However, in the presence of interaction, the correspondence principle is violated. PACS numbers: 03.65.Bz, 03.65.Sq ∗ Electronic mail: [email protected], [email protected]
متن کاملImplementability of Liouville Evolution, Koopman and Banach-Lamperti Theorems in Classical and Quantum Dynamics
We extend the concept of implementability of semigroups of evolution operators associated with dynamical systems to quantum case. We show that such an extension can be properly formulated in terms of Jordan morphisms and isometries on non-commutative L p spaces. We focus our attention on a non-commutative analog of the Banach-Lamperti theorem.
متن کاملKoopman-von Neumann Formulation of Classical Yang-Mills Theories: I
In this paper we present the Koopman-von Neumann (KvN) formulation of classical nonAbelian gauge field theories. In particular we shall explore the functional (or classical path integral) counterpart of the KvN method. In the quantum path integral quantization of Yang-Mills theories concepts like gauge-fixing and Faddeev-Popov determinant appear in a quite natural way. We will prove that these ...
متن کاملthe study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
Study of dynamics in unsteady flows using Koopman mode decomposition
The Koopman Mode Decomposition (KMD) is a data-analysis technique which is often used to extract the spatio-temporal patterns of complex flows. In this paper, we use KMD to study bifurcations of the lid-driven flow in a two-dimensional square cavity based on rigorous theorems related to the spectrum of the Koopman operator. We adopt a new computational algorithm, which is capable of detecting t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of geometric mechanics
سال: 2022
ISSN: ['1941-4889', '1941-4897']
DOI: https://doi.org/10.3934/jgm.2022019