$KO$-theory of complex Stiefel manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rolling Stiefel manifolds

In this paper rolling maps for real Stiefel manifolds are studied. Real Stiefel manifolds being the set of all orthonormal k-frames of an n-dimensional real Euclidean space are compact manifolds. They are considered here as rigid bodies embedded in a suitable Euclidean space such that the corresponding Euclidean group acts on the rigid body by rotations and translations in the usual way. We der...

متن کامل

On the Stiefel-whitney Numbers of Complex Manifolds and of Spin Manifolds

Proof. First consider the following example of the Conner-Floyd theorem. Let H,,,,,(C) denote a non-singular hypersurface of degree (1,l) in the product P,,,(C) x P.(C). b terms of homogeneous co-ordinates (wO, . . . , w,) and (z,,, . . . , .z”) with m 5 n this hypersurface can be defined as the locus w,,z, + wlzl + . . . + w,,,z, = 0. It can also be thought of as a P,_,(C)-bundle over P,(C).] ...

متن کامل

Non-neutrality of the Stiefel manifolds < II

The Stiefel manifolds < are shown to be non-neutral for m*5, 2 #2)k"2l( 2 !2. 2001 Elsevier Science Ltd. All rights reserved.

متن کامل

The Motivic Cohomology of Stiefel Manifolds

We calculate from first principles the motivic cohomology of Gl(n) and Stiefel manifoldsW(n,m). We also demonstrate a comparison map ΣtP → Gl(n). CONTENTS

متن کامل

Homogeneous Einstein metrics on Stiefel manifolds

A Stiefel manifold VkR n is the set of orthonormal k-frames inR, and it is diffeomorphic to the homogeneous space SO(n)/SO(n−k). We study SO(n)-invariant Einstein metrics on this space. We determine when the standard metric on SO(n)/SO(n−k) is Einstein, and we give an explicit solution to the Einstein equation for the space V2R.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 2004

ISSN: 2156-2261

DOI: 10.1215/kjm/1250283089